Object Detection

Tejus Gupta

Simplest Method: Sliding Window Approach

- Use a classifier that can identify if an image has an object.
- Use boxes with different scales, aspect ratios and positions to detect object.
- Be careful: Non maximal suppression

Template matching

- Histogram Of Gradient (Dalal and Triggs)
 - (Was so good, authors created new dataset INRIA)
 - Local appearance and shape characterized by edge direction, not precise location
 - o Divide image into cells, compute 1d histogram, normalize
 - For humans, coarse spatial sampling, fine orientation sampling and strong normalization best
 - Use (linear)SVM

Input example

Average gradients

Weighted pos wts

Weighted neg wts

 Deformable Parts Model (Girshick et al - Univ. of Chicago)

- Boosted cascade of Simple features(Viola, Jones Cambridge)
 - Integral image allows very fast feature evaluation
 - Just 3 kinds of features
 - Over 180,000 rectangle features for a window, much more than pixels
 - Apply each feature, choose best threshold and select features with min error rates(->6000 features)
 - Train a decision tree to select which features to evaluate

Segmentation as selective search + Regionlets features

- Use hierarchical segmentation to guess object location.
- Different strategies for deformable and rigid objects.
- Small regions vulnerable to variations, big regions poor localization.
- Regionlets are designed capture same appearance in different locations due to deformations.

Build a 3D Model

- Convert image to 1D array.
- Or use hand engineered feature extractors
- Train a classifier (kNN, ...) based on some distance metric.

Pascal VOC 2007 MAP

- DPM(2011) 33.7
- Regionlets 41.7
- R-CNN + AlexNet 54.2
- R-CNN + BBox regression 58.5
- R-CNN + VGG16 66
- Fast R-CNN 69 (0.5 FPS)
- Faster R-CNN 73 (VGG16, 7FPS) and 62 (ZF, 18FPS)
- YOLO 63.4 (45 FPS)

Convolutional Neural Networks

Try every box, but smartly

Window positions + score maps

Box regression outputs

Final Predictions

Region Proposal

R-CNN

Fast R-CNN

Faster R-CNN

YOLO

Andrea Vedaldi's Tutorials

Decision tree trained on VGG16 features

Bag of Visual Words

Thank You

Tejus Gupta

tejusgupta14@gmail.com